LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2011

MT 5505/MT 5501 - REAL ANALYSIS

Date: 31-10-2011 Dept. No. Max.: 100 Marks
Time: 9:00 - 12:00

PART-A

ANSWER ALL QUESTIONS

 $(10 \times 2 = 20)$

- 1. Give an example of a subset of real numbers which is not order complete.
- 2. Write the triangular inequality.
- 3. Define interior of a subset of metric spaces.
- 4. Give an example of a compact subset of set of real numbers.
- 5. Show that every convergent sequence is a Cauchy sequence.
- 6. Define complete metric space and give an example of a space which is not complete.
- 7. Show that a function which is differential at c is also continuous at c.
- 8. Define local minimum and local maximum of a function at a point.
- 9. Define monotonic sequence of real numbers and give an example of it.
- 10. Give an example of a function which is not Riemann Stieltjes integrable.

PART -B

ANSWER ANY FIVE QUESTIONS

 $(5 \times 8 = 40)$

- 11. State and prove Cauchy Schwarz inequality.
- 12. Show that the set of all sequences whose terms are 0 and 1 is uncountable.
- 13. Show that every nonempty open subset S of R¹ is the union of a countable collection of pair wise disjoint open intervals whose end points do not belong to S.
- 14. Show that every compact subset of a metric space is complete.
- 15. If f is an increasing function on [a,b] and $c \in (a, b)$, show that f(c+) and f(c-) exist and $f(c-) \le f(c) \le f(c+)$.
- 16. State and prove chain rule for differentiation.
- 17. If f, g \in R(α) on [a,b] show that for constants a and b, af+bg \in R(α) and $\int_a^b (af + bg) d\alpha = a \int_a^b f d\alpha + b \int_a^b g d\alpha.$
- 18. If $f \in R(\alpha)$ on [a,b] show that $\alpha \in R(f)$ on [a,b] and $\int_a^b f d\alpha + \int_a^b \alpha df = f(b)\alpha(b) f(a)\alpha(a)$.

PART - C

Answer any TWO questions

 $(2 \times 20 = 40)$

- 19. (a) If Γ is a countable collection of pair wise disjoint countable sets, show that $\bigcup_{F \in r} F$ is also countable.
 - (b) If A is a countable set and B is uncountable show that B A is similar to B.
 - (c) State and prove Minkowski's inequality.

(6+6+8)

- 20. (a) Show that a subset E of a metric space (M, d) is closed if and only if it contains all its adherent points.
 - (b) State and Prove Bolzano Weirstrass theorem.

(10+10)

- 21. (a) Show that Euclidean space Rⁿ is complete.
 - (b) Show that continuous function defined on compact space is uniformly continuous.

(10 + 10)

- 22. (a) State and prove Taylors theorem.
 - (b) Let $f \in R(\alpha)$ on [a,b], α is differentiable on [a,b] and α' is continuous on [a,b]. Show that Riemann integral $\int_a^b f \alpha' dx$ exists and $\int_a^b f da = \int_a^b f \alpha' dx$. (10+10)

\$\$\$\$\$\$\$